skip to main content


Search for: All records

Creators/Authors contains: "Shilling, John E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Secondary organic aerosol (SOA) is a dominant contributor of fine particulate matter in the atmosphere, but the complexity of SOA formation chemistry hinders the accurate representation of SOA in models. Volatility-based SOA parameterizations have been adopted in many recent chemistry modeling studies and have shown a reasonable performance compared to observations. However, assumptions made in these empirical parameterizations can lead to substantial errors when applied to future climatic conditions as they do not include the mechanistic understanding of processes but are rather fitted to laboratory studies of SOA formation. This is particularly the case for SOA derived from isoprene epoxydiols (IEPOX SOA), for which we have a higher level of understanding of the fundamental processes than is currently parameterized in most models. We predict future SOA concentrations using an explicit mechanism and compare the predictions with the empirical parameterization based on the volatility basis set (VBS) approach. We then use the Community Earth System Model 2 (CESM2.1.0) with detailed isoprene chemistry and reactive uptake processes for the middle and end of the 21st century under four Shared Socioeconomic Pathways (SSPs): SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. With the explicit chemical mechanism, we find that IEPOX SOA is predicted to increase on average under all future SSP scenarios but with some variability in the results depending on regions and the scenario chosen. Isoprene emissions are the main driver of IEPOX SOA changes in the future climate, but the IEPOX SOA yield from isoprene emissions also changes by up to 50 % depending on the SSP scenario, in particular due to different sulfur emissions. We conduct sensitivity simulations with and without CO2 inhibition of isoprene emissions that is highly uncertain, which results in factor of 2 differences in the predicted IEPOX SOA global burden, especially for the high-CO2 scenarios (SSP3–7.0 and SSP5–8.5). Aerosol pH also plays a critical role in the IEPOX SOA formation rate, requiring accurate calculation of aerosol pH in chemistry models. On the other hand, isoprene SOA calculated with the VBS scheme predicts a nearly constant SOA yield from isoprene emissions across all SSP scenarios; as a result, it mostly follows isoprene emissions regardless of region and scenario. This is because the VBS scheme does not consider heterogeneous chemistry; in other words, there is no dependency on aerosol properties. The discrepancy between the explicit mechanism and VBS parameterization in this study is likely to occur for other SOA components as well, which may also have dependencies that cannot be captured by VBS parameterizations. This study highlights the need for more explicit chemistry or for parameterizations that capture the dependence on key physicochemical drivers when predicting SOA concentrations for climate studies. 
    more » « less
  2. Abstract. The GoAmazon 2014/5 field campaign took place in Manaus, Brazil, and allowed the investigation of the interaction between background-level biogenic air masses and anthropogenic plumes.We present in this work a box model built to simulate the impact of urban chemistry on biogenic secondary organic aerosol (SOA) formation and composition.An organic chemistry mechanism is generated with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate the explicit oxidation of biogenic and anthropogenic compounds.A parameterization is also included to account for the reactive uptake of isoprene oxidation products on aqueous particles.The biogenic emissions estimated from existing emission inventories had to be reduced to match measurements.The model is able to reproduce ozone and NOx for clean and polluted situations.The explicit model is able to reproduce background case SOA mass concentrations but does not capture the enhancement observed in the urban plume.The oxidation of biogenic compounds is the major contributor to SOA mass.A volatility basis set (VBS) parameterization applied to the same cases obtains better results than GECKO-A for predicting SOA mass in the box model.The explicit mechanism may be missing SOA-formation processes related to the oxidation of monoterpenes that could be implicitly accounted for in the VBS parameterization. 
    more » « less
  3. Abstract

    Understanding the formation processes of particles and cloud condensation nuclei (CCN) in pristine environments is a major challenge in assessing the anthropogenic impacts on climate change. Using a state‐of‐the‐art model that systematically simulates the new‐particle formation (NPF) from condensable vapors and multi‐scale transport of chemical species, we find that NPF contributes ∼90% of the particle number and ∼80% of the CCN at 0.5% supersaturation (CCN0.5%) in the pristine Amazon boundary layer during the wet season. The corresponding contributions are only ∼30% and ∼20% during the dry season because of prevalent biomass burning. In both seasons, ∼50% of the NPF‐induced particles and ∼85% of the NPF‐induced CCN0.5% in the boundary layer originate from the long‐range transport of new particles formed hundreds to thousands of kilometers away. Moreover, about 50%–65% of the NPF‐induced particles and 35%–50% of the NPF‐induced CCN0.5% originate from the downward transport of new particles formed aloft.

     
    more » « less